Finite groups whose Sylow $2$-subgroups are the direct product of a dihedral and a semi-dihedral group
نویسندگان
چکیده
منابع مشابه
Classification of finite simple groups whose Sylow 3-subgroups are of order 9
In this paper, without using the classification of finite simple groups, we determine the structure of finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.
متن کاملEndotrivial Modules over Groups with Quaternion or Semi-dihedral Sylow 2-subgroup
Suppose that G is a finite group and that k is a field of characteristic p. Endotrivial kG-modules appear in a natural way in many areas surrounding local analysis of finite groups. They were introduced by Dade [14] who classified them in the case that G is an abelian p-group. A complete classification of endotrivial modules over the modular group rings of p-groups was completed just a few year...
متن کاملfinite groups whose minimal subgroups are weakly h*-subgroups
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
متن کاملA New Finite Simple Group with Abelian 2-sylow Subgroups.
A 2-Sylow subgroup of J is elementary abelian of order 8 and J has no subgroup of index 2. If r is an involution in J, then C(r) = (r) X K, where K _ A5. Let G be a finite group with the following properties: (a) S2-subgroups of G are abelian; (b) G has no subgroup of index 2; and (c) G contains an involution t such that 0(t) = (t) X F, where F A5. Then G is a (new) simple group isomorphic to J...
متن کاملFinite Groups Whose «-maximal Subgroups Are Subnormal
Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1973
ISSN: 0019-2082
DOI: 10.1215/ijm/1256051605